MIDAS: An Agent Based Data Transcoding Services Framework

Rahul Ramachandran, Sunil Movva, Xiang Li, Sara Graves Information Technology and Systems Center University of Alabama in Huntsville

rramachandran@itsc.uah.edu

Earth Science Technology Conference, Paolo Alto, CA

Data Preparation/Preprocessing

- Important step before analysis or mining
- Several preprocessing steps are general
 - Subsetting
 - Data Format Translation
 - Reprojection
- Subsetting: a data reduction step that helps in making the size of the data managable
- Data Format Translation: a format conversion step that allows the data to be stored in a familiar format

Project Objective

 To provide an intelligent, automated data preprocessing for Earth Science data

Challenges

- Requires a rich set of metadata
 - Structural metadata: to provide full description of the data file in bits & bytes, to allow application to read the data
 - Semantic metadata: to provide meaning of the data along with a context, to allow application to understand what it has read and how to use it
- Requires a Data Preprocessing Framework
 - Framework properties: Loosely coupled, asynchronous, intelligent and distributed

Metadata Solution

- Use Earth Science Markup Language (ESML) for structural metadata description
- Enhance ESML description by providing semantic metadata by leveraging ontologies

Background: Earth Science Data Characteristics

- Different formats, types and structures (18 and counting for Atmospheric Science alone!)
- Some formats lack metadata where as others are metadata rich (\$)
- Heterogeneity leads to Data usability problem

Background: Data Usability Problem

- Requires specialized code for every format
 - Difficult to assimilate new data types
 - Makes applications tightly coupled to data
- One possible solution enforce a Standard Data Format
 - Not practical for legacy datasets

Background: Earth Science Markup Language (ESML)

- ESML (external metadata) files containing the structural description of the data format
- Applications utilize these descriptions to figure out how to read the data files resulting in data interoperability for applications

Requirement: Vertical Metadata Integration

- Horizontal Metadata
 Integration
 - Mediation services
 - Yellow page services
- Vertical Metadata Integration focuses on semantics for the use of the data by an application
- Both Structural and Semantic metadata are required

Solution: Extending ESML with Ontologies

The University of Alabama in Huntsville

- ESML Schema provides structural metadata
- Extend ESML schema by embedding semantic terms in the ESML Description File to provide a complete description of the data
 - Allow various science communities can create their own ontologies (for example, SWEET) and use them with ESML Description Files for their data

June 22-25,2004

Example: Embedding Semantics in ESML

```
<<a:ESML xmlnsa="ESML"xmlnsxsi="http://www.w3.org/20015/chema-instance"</p>
xsi:schemaLocatio#"ESML.xsd" >
                                                                                ESML Description File
 <SyntacticMetaData
                                                                        embedded with Semantic Tags
  <Binary>
  <Structure instances="1" nam@arhpleSet">
                                                                         defined in separate ontologies
    <Array occurs="100">
     <Array occurs="100">
      <Field name=UWind" type="Int32" order#tleEndiarl/>
     </Array>
                                                          <a:ESML xmlns:a="ESML"xmlns:xs="http://www.wB.org/2001/XMLSclinestaance"
    </Array>
                                                          xsi:schemal.ocatio#"ESML"
    <Array occurs="100">
                                                          xmlns:dam\="http://www.daml.org/2001/03/daml+oil\#"
     <Array occurs="100">
                                                          xmlns="http://www.itsc.uah.edu/esrek#">
     <Field name=DimX" type="Int32" order#tleEndiarl/>
                                                             <SemanticMetaData
     </Array>
                                                                <Latitudedf:ID='DimX"/>
    </Array>
                                                                <Longitudedf:ID='DimY"/>
    <Array occurs="100">
                                                                <DataFieldrdf:ID='UWind"/>
     <Array occurs="100">
                                                                <DataSetrdf:ID='SampleSet'>
      <Field name=DimY" type="Int32" order#tleEndiarl/>
                                                                   <hasFieldrdf:resource"#DimX"/>
     </Array>
                                                                   <hasFieldrdf:resource"#DimY"/>
    </Array>
                                                                   <hasFieldrdf:resource"#JWind"/>
   </Structure>
                                                                <DataSeb
  </Binary>
                           Original ESML
                                                             < Semantic Meta Data
< Syntactic Meta Data
                                                             <SyntacticMetaData</p>
</a:ESML>
                             Description
                                                                <Binary>
                                                                   <Structure instances="1" nam@arhpleSet">
                       File containing only
                                                                   </Structure>
                      structural metadata
                                                                </Binary>
                                                             < Syntactic Meta Data
                                                          </a:FSML >
```


Agent Framework Design: Layer Architecture

- Infrastructure Layer: provides the environment that agents can act upon, i.e. services
- Agent Layer: contains the agents used to achieve the overall goal of the framework
- Organization Layer: defines the organizational structure of the system which is important for agents interaction
- Coordination Layer: defines coordination methods required to resolve conflicts and select the next agent
- Constraint Layer: verifies whether the system goals are met and interfaces with the users/user interface

Agent Framework Design: Infrastructure Layer

- Consists of "transcoding" services
 - Search
 - Subsetting
 - Data Format Translation
 - Calibration
 - Navigation
 - Reprojection
 - Visualization
 - Aggregation
 - Fusion
 - Mining

Agent Framework Design: Agent Layer (1)

- All the agents have the following features:
 - Role
 - Behavior- methods/functions that it can act upon
 - State store information of itself and the world it perceives
 - Intelligence/Knowledge
 to be able to make decisions via ontologies and a reasoning engine or via a machine learning algorithm or via heuristic algorithm
 - Communication protocol to interact with other agents
- Types of Agents
 - Manager Agents
 - Global Manager
 - Domain Manager
 - Worker Agents

Agent Framework Design: Agent Layer (2)

- Global Manager Agent: Given an user input request, distribute the work and collate results
- Domain Manager Agent:
 - Keeps a registry of all the Worker agents in its domain
 - All Worker agents advertise their capabilities to the Manager Agent
 - Parses the incoming message and uses an ontology to find the "correct"
 Worker agent
 - Polls Worker agents for results
 - Fires and Hires Agents
- Worker Agent: Uses ESML semantic metadata and ontologies to map input message to API requirements of the Service
 - Example:
 - Navigate the data
 - Map Parameter Concept to Field Name(s)
 - Map Spatial Concept to Bounding Box
 - Map Temporal Concepts to Time Range

Agent Framework Design: Organization Layer

- A simple tree structure with a global manager and number of domains is used.
- Each of the domains contains a Manager agent and Worker agents
- Advantage: scalable design that will allow addition of new domains to the overall framework

June 22-25,2004

Agent Framework Design: Coordination Layer

- A broker model is used
- Advantage: unlike matchmaker or a contract-net, this model allows the broker to shoulder some responsibility of finding the right agent and returning the result

Agent Framework Design: Constraint Layer Design

- By using a tree to represents requests, one can check the goal achievement.
- When all the leaf and intermediary nodes are satisfied, resulting in completion of the root node, the task has been accomplished.

Agent Framework Design: Performatives

- Performatives are the permissible "speech acts" agents use to interact
- Partial set derived from KQML (Knowledge Query and Manipulation Language-UMBC)
- Basic Responses:
 - Error, Sorry
- Query:
 - Evaluate, AskStatus
- Capability:
 - Advertise

advertise

- :content <performative>
- :language KQML
- :ontology <word>
- :force <word>
- :sender <word>
- :receiver <word>

MIDAS in Action: Initialization

June 22-25,2004

Demo: Simple Subsetting Query

 Given spatial and temporal bounds, subset a data file Domain manager selects a subset agent Subset agents performs the following actions: Navigate the data using ESML semantic metadata and the ontology Map the data to the subsetting service API

Publications/Presentations

- Ramachandran, R., H. Conover, S. Movva, and S. Graves, 2003: Using ESML in a Semantic Web Approach for Improved Earth Science Data Usability. Semantic Web, Sannibel, FL.
- Ramachandran, R., S. Movva, and S. Graves, 2003: Coupling
 Ontology with Earth Science Markup Language for Scientific
 Dataset Description. Geological Society of America Meeting, Seattle,
 WA.
- Movva, S., R. Ramachandran, X. Li, S. Khaire, K. Keiser, H.
 Conover, and S. Graves, Submitted 2004: Syntactic and Semantic
 Metadata Integration for Science Data Use. Computers &
 Geosciences.
- Ramachandran, R., S. Graves, S. Movva, and X. Li, 2004: Agent Framework for Intelligent Data Processing. *IEEE International* Geoscience and Remote Sensing Symposium, Anchorage, Alaska,

Collaborations

Questions?

